RNA interference-mediated silencing of BACE and APP attenuates the isoflurane-induced caspase activation
نویسندگان
چکیده
BACKGROUND β-Amyloid protein (Aβ) has been shown to potentiate the caspase-3 activation induced by the commonly used inhalation anesthetic isoflurane. However, it is unknown whether reduction in Aβ levels can attenuate the isoflurane-induced caspase-3 activation. We therefore set out to determine the effects of RNA interference-mediated silencing of amyloid precursor protein (APP) and β-site APP-cleaving enzyme (BACE) on the levels of Aβ and the isoflurane-induced caspase-3 activation. METHODS H4 human neuroglioma cells stably transfected to express full-length human APP (H4-APP cells) were treated with small interference RNAs (siRNAs) targeted at silencing BACE and APP for 48 hours. The cells were then treated with 2% isoflurane for six hours. The levels of BACE, APP, and caspase-3 were determined using Western blot analysis. Sandwich Enzyme-linked immunosorbent assay (ELISA) was used to determine the extracellular Aβ levels in the conditioned cell culture media. RESULTS Here we show for the first time that treatment with BACE and APP siRNAs can decrease levels of BACE, full-length APP, and APP c-terminal fragments. Moreover, the treatment attenuates the Aβ levels and the isoflurane-induced caspase-3 activation. These results further suggest a potential role of Aβ in the isoflurane-induced caspase-3 activation such that the reduction in Aβ levels attenuates the isoflurane-induced caspase-3 activation. CONCLUSION These findings will lead to more studies which aim at illustrating the underlying mechanism by which isoflurane and other anesthetics may affect Alzheimer's disease neuropathogenesis.
منابع مشابه
Isoflurane-induced caspase-3 activation is dependent on cytosolic calcium and can be attenuated by memantine.
Increasing evidence indicates that caspase activation and apoptosis are associated with a variety of neurodegenerative disorders, including Alzheimer's disease. We reported that anesthetic isoflurane can induce apoptosis, alter processing of the amyloid precursor protein (APP), and increase amyloid-beta protein (Abeta) generation. However, the mechanism by which isoflurane induces apoptosis is ...
متن کاملBcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia
Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...
متن کاملMinocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation
Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...
متن کاملPropofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore
BACKGROUND The inhalation anesthetic isoflurane has been shown to open the mitochondrial permeability transition pore (mPTP) and induce caspase activation and apoptosis, which may lead to learning and memory impairment. Cyclosporine A, a blocker of mPTP opening might attenuate the isoflurane-induced mPTP opening, lessening its ripple effects. Magnesium and anesthetic propofol are also mPTP bloc...
متن کاملMinocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation
Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...
متن کامل